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ABSTRACT

An Alexander quandle Mt is an abelian group M with a quandle operation a ∗ b =
ta+(1− t)b where t is a group automorphism of the abelian group M . In this paper, we
will study the commutativity of an Alexander quandle and introduce the relationship
between Alexander quandles Mt and M1−t determined by group automorphisms t and
1 − t, respectively.
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1. Introduction

A quandle is a kind of algebraic structure that is closely related to the study of knot
theory. The defining axioms of a quandle are derived from Reidemeister moves. In
1942, Takasaki introduced a kei which is referred to as an involutory quandle later
[16]. In 1982, Joyce [8] and Matveev [11] independently introduced the definition of
a quandle under the name “quandle” and “distributive groupoid”, respectively. In
their papers, they proved that if the knot quandles (the groupoids) of two knots are
isomorphic, then the knots are equivalent up to orientation, that is, knot quandles
can distinguish any knots up to the orientation. In this sense, a knot quandle is an
almost complete invariant for knots. The classification of quandles has been studied
by many researchers, see [1, 3, 9, 12, 14].

One of typical examples of quandles is an Alexander quandle, which is a mod-
ule over Z[t, t−1] with the operation a ∗ b = ta +(1− t)b. In [4, 5], Hou gave a
classification of Alexander quandles of order pn for n ≤ 4 and determined the
(quandle) automorphism group of an Alexander quandle. In [2], Ferman, Nowik
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and Teicher also dealt with Alexander quandles of prime order and their (quandle)
automorphisms.

In this paper, we will focus on the structure of Alexander quandles from the
viewpoint of properties of the group automorphisms. An Alexander quandle Mt is
an abelian group M with the binary operation a∗tb = ta+(1−t)b where t is a group
automorphism of M . The quandle structure of Mt is completely determined by the
group automorphism t. In particular, we will focus on the relationship between Mt

and M1−t when both t and 1 − t are group automorphisms of M . We will show
that an Alexander quandle Mt is commutative if and only if 2t = 1 where 1 is
the identity map of M . We will classify commutative Alexander quandles Mt for a
finitely generated abelian group M .

2. Main Results

Definition 2.1. A quandle is a set Q equipped with a binary operation ∗ : Q×Q →
Q satisfying the following three axioms.

(i) For all a ∈ Q, a ∗ a = a.
(ii) For all a, b ∈ Q, there exists a unique c in Q such that c ∗ a = b.
(iii) For all a, b, c ∈ Q, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

For any set Q, a binary operation ∗ : Q × Q → Q is defined by a ∗ b = a for all
a, b ∈ Q. Then a pair (Q, ∗) is a quandle, which is called the trivial quandle.

Let M be an abelian group and t a group automorphism of M . Define a binary
operation ∗t : M × M → M by

a ∗t b = ta + (1 − t)b

for all a, b ∈ M . It is easy to check that a pair (M, ∗t) is a quandle. We call it an
Alexander quandle and for the sake of simplicity, denote (M, ∗t) by Mt.

From the second condition and the third condition in the definition of a quandle,
for each a ∈ Q, the function ∗a : Q → Q, defined by (∗a)(x) = x ∗ a for all
x ∈ Q, is a quandle automorphism of Q. Therefore, we can define a new operation
∗̄ : Q × Q → Q by a ∗̄ b = c whenever c ∗ a = b for all a, b ∈ Q. It is also a
quandle operation on Q, which is called the reverse operation of ∗, see [10] for the
detail.

Consider the group AutQ(Q) of quandle automorphisms of Q and the free group
F (Q) on Q. Define a function φ : Q → AutQ(Q) by φ(a) = ∗a for all a ∈ Q. Then
we obtain a homomorphism from F (Q) to AutQ(Q), indeed, a right action of F (Q)
on Q is as an action of quandle automorphisms of Q. A quandle (Q, ∗) is said to
be connected if F (Q) acts transitively on Q, that is, for every x, y ∈ Q, there exists
z ∈ F (Q) such that x ∗ z = y, see [2].

Definition 2.2. A quandle (Q, ∗) is said to be commutative if a ∗ b = b ∗ a for all
a, b ∈ Q.
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Remark 2.3. (1) In [8], Joyce introduced an abelian quandle, which is a quandle Q

satisfying (a∗b)∗(c∗d) = (a∗c)∗(b∗d) for all a, b, c, d ∈ Q, and in [15], Neumann
defined a commutative quandle Q which is defined by (a ∗ b) ∗ c = (a ∗ c) ∗ b

for all a, b, c ∈ Q. The definition of Neumann’s commutativity came from the
view point of the action of AutQ(Q) on Q. Our definition for commutativity of
a quandle is different to both of them.

(2) In [7], Ishii, Iwakiri, Jang and Oshiro introduced the notion of a G-family of
quandles, which is motivated by handlebody-knots. One can check that the
family {Mt}t∈Aut(M) of Alexander quandles is a G-family of quandles where
G = Aut(M).

Let t be a group automorphism of an abelian group M so that it induces the
Alexander quandle Mt. Since the inverse map t−1 of t is also a group automorphism
of M , one can obtain an Alexander quandle Mt−1 on M . Note that the quandle
operation ∗t−1 is the reverse operation of ∗t, and that t is the identity map of M if
and only if Mt is the trivial quandle.

Since the Alexander quandle structure of Mt is completely determined by the
group automorphism t, one can expect a kind of relationship between Mt and
Ms when t and s have some relationship as group automorphisms. The following
example can give some motivation for this approach.

Example 2.4. Let M = Z5 = {0, 1, 2, 3, 4} be the cyclic group of order 5. Note
that Aut(Z5) consists of four automorphisms t1, t2, t3, t4, where ti : Z5 → Z5 is the
group automorphism of Z5 defined by ti(1) = i. The operation tables of Alexander
quandles Mti are given in Table 1.

Notice that Mt1 is the trivial quandle and Mt3 is commutative, while the oper-
ation table of Mt4 is the transpose of the operation table of Mt2 as matrices, and
that the automorphisms t2 and t3 satisfy the relation t3 = t−1

2 , but there are no
relationship between their quandle structure. Also note that Mt3 is commutative,
while Mt2 is not commutative, and that a ∗t2 b = b ∗t4 a for all a, b ∈ M , which is
equivalent to the relation t4 = 1 − t2.

For an abelian group M and t ∈ Aut(M), if 1 − t is a group automorphism of
M , then a ∗t b = b ∗1−t a for all a, b ∈ Aut(M). Furthermore if M is finite, then the
operation table of M1−t is the transpose of the operation table of Mt as matrices.

Table 1. The operation tables of Alexander quandles of Z5.

Mt1 Mt2
∗t1 0 1 2 3 4 ∗t2 0 1 2 3 4
0 0 0 0 0 0 0 0 4 3 2 1
1 1 1 1 1 1 1 2 1 0 4 3
2 2 2 2 2 2 2 4 3 2 1 0
3 3 3 3 3 3 3 1 0 4 3 2
4 4 4 4 4 4 4 3 2 1 0 4

Mt3 Mt4
∗t3 0 1 2 3 4 ∗t4 0 1 2 3 4
0 0 3 1 4 2 0 0 2 4 1 3
1 3 1 4 2 0 1 4 1 3 0 2
2 1 4 2 0 3 2 3 0 2 4 1
3 4 2 0 3 1 3 2 4 1 3 0
4 2 0 3 1 4 4 1 3 0 2 4
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From the fact that t3 = 1− t3, one can see the operation table of Mt3 is symmetric,
that is, Mt3 is commutative.

In general, 1−t is not a group automorphism of M . The following theorem gives
necessary and sufficient conditions that 1 − t is a group automorphism of M .

Theorem 2.5. Let M be a finite abelian group and t ∈ Aut(M). The following are
equivalent.

(1) 1 − t is a group automorphism of M .
(2) t has no fixed points except 0.
(3) Mt is connected.

Proof. Since 1 − t is a group homomorphism of M , it is sufficient to check that
1 − t is bijective. Since M is finite, 1 − t is bijective if and only if ker(1 − t) = 0.
Since (1 − t)x = 0 is equivalent to tx = x, ker(1 − t) = 0 if and only if t has no
fixed points except 0. Therefore (1) and (2) are equivalent.

To show that (1) implies (3), let 1 − t be a group automorphism of M . Then
(1 − t)M = M . For all x, y ∈ M , y − tx ∈ M . Since (1 − t)M = M , there exists
z ∈ M such that y − tx = (1− t)z. Then x ∗t z = tx + (1− t)z = y for all x, y ∈ M .
Hence Mt is connected.

Conversely, assume that Mt is connected. Since 1− t is a group homomorphism
of M and M is finite, it is sufficient to show that 1 − t is surjective. Since M

is connected, for each y ∈ M there exists z ∈ F (M) such that 0 ∗ z = y. Put
z = we1

1 we2
2 · · ·wek

k where wi ∈ M and ei ∈ {1,−1} for all i = 1, 2, . . . , k. Since
0 ∗ z = (· · · ((0 ∗t we1

1 ) ∗t we2
2 ) · · ·) ∗t wek

k = y, te1+···+ek0 + te2+···+ek(1 − te1)w1 +
te3+···+ek(1 − te2)w2 + · · · + (1 − tek)wk = y. If ei = 1, then 1 − tei = 1 − t. If
ei = −1, then 1 − tei = t−1t(1 − t−1) = −t−1(1 − t). Therefore (1 − t)m = y for
some m ∈ M . Hence 1 − t is surjective.

Remark 2.6. In [3], Graña showed that Mt is indecomposable if and only if 1− t

is surjective, and Mt is faithful if and only if 1− t is injective. These are equivalent
to the condition that 1 − t is a group automorphism for the finite quandle M .

Example 2.7. Let Z3 × Z3 be an abelian group of order 9. Define t : Z3 × Z3

→ Z3 × Z3 by t(1, 0) = (1, 1) and t(0, 1) = (1, 0). It is easy to check that t is a
group automorphism of Z3 × Z3 and that t has no fixed points except (0, 0). By
Theorem 2.5, 1 − t is also a group automorphism of Z3 × Z3. The operation tables
of Mt and M1−t of M = Z3 × Z3 are given in Table 2.

The following is a necessary and sufficient condition for an Alexander quandle
to be commutative, which is motivated by Mt3 in Example 2.4.

Theorem 2.8. Let M be an abelian group and t ∈ Aut(M). Then an Alexander
quandle Mt is commutative if and only if 2t = 1 where 1 is the identity map of M .
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Table 2. The operation tables of Alexander quandles Mt and M1−t of Z3×Z3.

Mt

∗t (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
(0, 0) (0, 0) (2, 1) (1, 2) (0, 2) (2, 0) (1, 1) (0, 1) (2, 2) (1, 0)
(0, 1) (1, 0) (0, 1) (2, 2) (1, 2) (0, 0) (2, 1) (1, 1) (0, 2) (2, 0)
(0, 2) (2, 0) (1, 1) (0, 2) (2, 2) (1, 0) (0, 1) (2, 1) (1, 2) (0, 0)
(1, 0) (1, 1) (0, 2) (2, 0) (1, 0) (0, 1) (2, 2) (1, 2) (0, 0) (2, 1)
(1, 1) (2, 1) (1, 2) (0, 0) (2, 0) (1, 1) (0, 2) (2, 2) (1, 0) (0, 1)
(1, 2) (0, 1) (2, 2) (1, 0) (0, 0) (2, 1) (1, 2) (0, 2) (2, 0) (1, 1)
(2, 0) (2, 2) (1, 0) (0, 1) (2, 1) (1, 2) (0, 0) (2, 0) (1, 1) (0, 2)
(2, 1) (0, 2) (2, 0) (1, 1) (0, 1) (2, 2) (1, 0) (0, 0) (2, 1) (1, 2)
(2, 2) (1, 2) (0, 0) (2, 1) (1, 1) (0, 2) (2, 0) (1, 0) (0, 1) (2, 2)

M1−t

∗1−t (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
(0, 0) (0, 0) (1, 0) (2, 0) (1, 1) (2, 1) (0, 1) (2, 2) (0, 2) (1, 2)
(0, 1) (2, 1) (0, 1) (1, 1) (0, 2) (1, 2) (2, 2) (1, 0) (2, 0) (0, 0)
(0, 2) (1, 2) (2, 2) (0, 2) (2, 0) (0, 0) (1, 0) (0, 1) (1, 1) (2, 1)
(1, 0) (0, 2) (1, 2) (2, 2) (1, 0) (2, 0) (0, 0) (2, 1) (0, 1) (1, 1)
(1, 1) (2, 0) (0, 0) (1, 0) (0, 1) (1, 1) (2, 1) (1, 2) (2, 2) (0, 2)
(1, 2) (1, 1) (2, 1) (0, 1) (2, 2) (0, 2) (1, 2) (0, 0) (1, 0) (2, 0)
(2, 0) (0, 1) (1, 1) (2, 1) (1, 2) (2, 2) (0, 2) (2, 0) (0, 0) (1, 0)
(2, 1) (2, 2) (0, 2) (1, 2) (0, 0) (1, 0) (2, 0) (1, 1) (2, 1) (0, 1)
(2, 2) (1, 0) (2, 0) (0, 0) (2, 1) (0, 1) (1, 1) (0, 2) (1, 2) (2, 2)

Proof. Assume that an Alexander quandle Mt is commutative, that is, a∗tb = b∗ta

for all a, b ∈ M . Since a ∗t 0 = 0 ∗t a for all a ∈ M , ta = (1 − t)a and hence
(2t)a = a = 1(a) for all a ∈ M where 1 is the identity map of M . Therefore 2t = 1.
Conversely, let t ∈ Aut(M) satisfying 2t = 1. Since t = 1 − t, a ∗t b = b ∗t a for all
a, b ∈ M . Hence the Alexander quandle Mt is commutative.

By the virtue of the above theorem, we need to know whether there is a group
automorphism t of an abelian group M satisfying 2t = 1. First, we recall the well-
known classification theorem of finitely generated abelian groups, see [6].

Proposition 2.9. Let G be a finitely generated abelian group. Either G is free
abelian or there is a list of positive integers ps1

1 , ps2
2 , . . . , psk

k , which is unique except
for the order of its members such that p1, p2, . . . , pk are primes, s1, s2, . . . , sk are
positive integers and

G ∼= Zp
s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

⊕ Z
m

with rank(G) = m.

Let M be a finitely generated abelian group. If rank(M) ≥ 1, then M ∼= Z ⊕N

for some abelian group N . Let t be any group automorphism of Z ⊕ N . Then
t(1, 0) = (a, b) for some (a, b) ∈ Z⊕N where 1 is the generator of Z. Since 2t(1, 0) =
2(a, b) = (2a, 2b) and there is no the inverse element of 2 in Z, 2a �= 1 and hence
2t(1, 0) = (2a, 2b) �= (1, 0). Therefore 2t �= 1 where 1 is the identity map of Z ⊕ N .
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It rank(M) = 0, then there exist primes p1, p2, . . . , pk and positive integers
s1, s2, . . . , sk such that M ∼= Zp

s1
1
⊕Zp

s2
2
⊕· · ·⊕Zp

sk
k

. Assume that pi = 2 for some i ∈
{1, 2, . . . , k}, say p1 = 2. Let t be any group automorphism of Z2s1⊕Zp

s2
2
⊕· · ·⊕Zp

sk
k

.
Since t(1, 0, . . . , 0) = (a1, a2, . . . , ak) for some (a1, a2, . . . , ak) ∈ Z2s1 ⊕ Zp

s2
2

⊕ · · · ⊕
Zp

sk
k

where 1 is the generator of Z2s1 , 2t(1, 0, . . . , 0) = (2a1, 2a2, . . . , 2ak). Since
gcd(2s1 , 2) �= 1, there is no the inverse element of 2 in Z2s1 . Since 2t(1, 0, . . . , 0) =
(2a1, 2a2, . . . , 2ak) �= (1, 0, . . . , 0), t does not satisfy the condition 2t = 1 where 1 is
the identity map of Z2s1 ⊕ Zp

s2
2

⊕ · · · ⊕ Zp
sk
k

.
Assume that pi is odd for all i ∈ {1, 2, . . . , k}. Define t : Zp

s1
1
⊕Zp

s2
2
⊕· · ·⊕Zp

sk
k

→
Zp

s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

by

t(x1, x2, . . . , xk) =
(

ps1
1 + 1

2
x1,

ps2
2 + 1

2
x2, . . . ,

psk

k + 1
2

xk

)

for all (x1, x2, . . . , xk) ∈ Zp
s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

. For every i ∈ {1, 2, . . . , k}, since

pi is odd, p
si
i +1

2 ∈ Zp
si
i

. Then t is a well-defined group automorphism. It is easy to

prove that t is a group automorphism. Since 2(p
s1
1 +1

2 x1,
p

s2
2 +1

2 x2, . . . ,
p

sk
k +1

2 xk) =
((ps1

1 +1)x1, (ps2
2 +1)x2, . . . , (psk

k +1)xk) = (x1, x2, . . . , xk), t satisfies 2t = 1, where
1 is the identity map of Zp

s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

. Hence Mt is commutative. Thus,
one can obtain the following theorem.

Theorem 2.10. Let M be a finitely generated abelian group.

(1) If rank(M) ≥ 1, then Mt is not commutative for any t ∈ Aut(M).
(2) If rank(M) = 0 and if |M | is even, then Mt is not commutative for any t ∈

Aut(M).
(3) If rank(M) = 0 and if |M | is odd, then there exists a unique group automor-

phism t of M such that Mt is commutative.

Proof. It suffices to show the uniqueness of t in (3). Let t be a group automorphism
of Zp

s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

satisfying 2t = 1. For each i ∈ {1, 2, . . . , k}, let ei be a
generator (0, . . . , 1, . . . , 0) of Zp

s1
1
⊕· · ·⊕Zp

si
i
⊕· · ·⊕Zp

sk
k

of which every entry is zero
except the ith entry. Since every abelian group is a Z-module, t(x1, x2, . . . , xk) =
x1t(e1) + x2t(e2) + · · · + xkt(ek) for every (x1, x2, . . . , xk) ∈ Zp

s1
1

⊕ Zp
s2
2

⊕ · · · ⊕
Zp

sk
k

. Therefore, it is sufficient to determine the image of generators e1, e2, . . . , ek

of Zp
s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

. For the generator e1, there exists (a1, a2, . . . , ak) ∈
Zp

s1
1
⊕Zp

s2
2
⊕· · ·⊕Zp

sk
k

such that t(e1) = (a1, a2, . . . , ak) and ai ∈ {0, 1, . . . , psi

i −1}
for each i ∈ {1, 2, . . . , k}. Since 2t = 1, we obtain 2(a1, a2, . . . , ak) = (1, 0, . . . , 0),
that is, 2a1 = 1 in Zp

s1
1

and 2ai = 0 in Zp
si
i

for all i ∈ {2, 3, . . . , k}. Then 2a1 − 1 =

nps1
1 for some n ∈ Z and ai = 0 for all i ∈ {2, 3, . . . , k}. Since a1 = np

s1
1 +1
2 ∈

{0, 1, . . . , ps1
1 − 1}, 0 ≤ np

si
i +1

2 ≤ psi

i − 1 and hence n = 0 or 1. If n = 0, then

a1 = 1
2 . It contradicts that a1 is an integer. If n = 1, then a1 = p

s1
1 +1

2 . Since
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Table 3. The operation table of the commutative Alexander quandle of Z3×Z3.

∗t (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
(0, 0) (0, 0) (0, 2) (0, 1) (2, 0) (2, 2) (2, 1) (1, 0) (1, 2) (1, 1)
(0, 1) (0, 2) (0, 1) (0, 0) (2, 2) (2, 1) (2, 0) (1, 2) (1, 1) (1, 0)
(0, 2) (0, 1) (0, 0) (0, 2) (2, 1) (2, 0) (2, 2) (1, 1) (1, 0) (1, 2)
(1, 0) (2, 0) (2, 2) (2, 1) (1, 0) (1, 2) (1, 1) (0, 0) (0, 2) (0, 1)
(1, 1) (2, 2) (2, 1) (2, 0) (1, 2) (1, 1) (1, 0) (0, 2) (0, 1) (0, 0)
(1, 2) (2, 1) (2, 0) (2, 2) (1, 1) (1, 0) (1, 2) (0, 1) (0, 0) (0, 2)
(2, 0) (1, 0) (1, 2) (1, 1) (0, 0) (0, 2) (0, 1) (2, 0) (2, 2) (2, 1)
(2, 1) (1, 2) (1, 1) (1, 0) (0, 2) (0, 1) (0, 0) (2, 2) (2, 1) (2, 0)
(2, 2) (1, 1) (1, 0) (1, 2) (0, 1) (0, 0) (0, 2) (2, 1) (2, 0) (2, 2)

p1 is odd, p
s1
1 +1
2 ∈ Zp

s1
1

. Hence t(1, 0, . . . , 0) = (p
s1
1 +1
2 , 0, . . . , 0). By repeating the

same process, we can show that t(0, . . . , 1, . . . , 0) = (0, . . . ,
p

si
i +1

2 , . . . , 0) for each
i ∈ {1, 2, . . . , k}. Hence there is one and only one group automorphism t satisfying
2t = 1.

Example 2.11. (1) Let Z be the set of integers. Since rank(Z) = 1, (Z, ∗t) are not
commutative for any t ∈ Aut(Z).

(2) Let Z2 ⊕ Z3 be an abelian group of order 6. Since rank(Z2 ⊕ Z3) = 0 and
|Z2 ⊕ Z3| is even, (Z2 ⊕ Z3, ∗t) is not commutative for any t ∈ Aut(Z2 ⊕ Z3).

(3) Let Z3 ⊕ Z3 be an abelian group of order 9. Since rank(Z3 ⊕ Z3) = 0 and
|Z3 ⊕Z3| is odd, there exists the unique group automorphism t of Z3 ⊕Z3 such
that (Z3 ⊕Z3, ∗t) is commutative. In fact, the group automorphism t is defined
by t(x1, x2) = (2x1, 2x2) for all (x1, x2) ∈ Z3 ⊕ Z3. The operation table of an
Alexander quandle (Z3 ⊕ Z3, ∗t) is given in Table 3.

Remark 2.12. There are commutative Alexander quandles whose underlying
abelian group is not finitely generated. For example, consider the product M of
countably many copies of Z5. For the group automorphism t defined by t(x) = 3x

for all x ∈ M , Mt is commutative because 2t(x) = 6x = x.
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